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Abstract

Amongst the numerous calculation methods available to investigate minimal forms, an approach based on the
mechanical consideration of uniform tension in the domain leads to the writing of innovative relationships. Indeed, by
establishing the equivalence between the vector of nodal internal forces due to the prestressed domain and the gradient
of the function to be minimized, this study proposes to use the conjugate gradient method as a minimal area shape
form-finding tool.

The determination of descent directions may refer to Fletcher—Reeves suggestion or to an optimized value based on
the Polak—Ribiere formula. Moreover, the steplength calculation is envisaged in accordance with the More and Thu-
ente’s line search algorithm or with a modified approach especially adapted to the studied configurations.

Numerical experiments illustrate the use of the conjugate gradient method and thus point out the efficiency of the
suggested modifications related to required computation times.

In a second time, the conjugate gradient method is compared with density methods and a mixed formulation is
therefore put forward. Numerical tests enable the comparison between these different approaches. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

In view of their intrinsic properties, minimal forms constitute one of the most attractive domains of
science. Numerous methods were therefore proposed in order to ensure their form finding.

Based on the geometrical specification of zero mean curvature, we leave aside numerical approaches
essentially related to the resolution of Laplace’s equation. Major results were found also from physical
modeling such as the studies on soap films undertaken by Otto (1973).
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The other significant property, i.e. uniform tension configuration, has led to several mechanical for-
mulations. We distinguish methods based on non-linear large displacement finite element procedures
(Haug, 1987) or on the use of dynamic relaxation (Barnes, 1976; Lewis and Lewis, 1996).

The problem is taken up in this paper with the aim of suggesting new approaches and henceforth in-
novative shape-finding processes. This paper aims to establish theoretical relationships between internal
forces related to the tension of the domain and analytic functions that have to be minimized. Afterwards,
the conjugate gradient method is used as an optimization tool which leads to the determination of the
searched configurations.

2. Calculation of minimal forms
2.1. Minimal length nets

These configurations are characterized by the mechanical consideration of homogeneous tension in cable
elements or by considering that the sum of way length . is minimal.

The studied structure includes N nodes and C cable elements, ¢; elements are adjacent to the node i.
Hence, if each element k has a length of /., then

c c c
& = chk = Z”lkzk” = Z(Xlizk + Ylfzk "‘lekzk)O'S? (2.1)
k=1 =1 =1
where X;, and X, are the global coordinates of the two nodes 1, and 2 for the cable element k in the global
structure axis (X ¥Z) and Xs,1, = Xa, — Xi,.

We can write ¥ = f(Z), where & = {2} represents the vector of the nodal coordinates such as
{;%"}T =XNZ .. Xk YiZe ... Xy Yy Zy). & has turning values if at each node k& we verify

Of(T) _f(7) _ ()

= = =0. 2.2
an aYk aZk ( )

Therefore, it can be written for X direction:

of (X)) 0L KXoy
X, X, l,

=0 (2.3)

j=1

with X; = X, (1 being one end of element j, see Fig. 1(a)); similar expressions are valid for Y and Z di-
rections.
If there exists an homogeneous tension #, in the cable net, the residual force F; at node i is

ﬁ;’ = Zto 52]‘7 (24)
=1

where Z; is the norm vector associated to element j. Along the direction X, we have

F, =1 LZ
=

Xo,i

by

(2.5)

Since equilibrium is reached when components of ; cancel, we find the same expression as for Eq. (2.3)
and then it is shown that 0.%/0X; = 0.2 /0Y;, = 0.9 /0Z; = 0 is equivalent to F,, = F;, = F, = 0.

Therefore, minimization of the cable net length can be replaced by the minimization of the nodal forces
F; to zero, which expresses that the uniform tension cable structure is an equilibrated configuration.
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(a) (b)

Fig. 1. (a) Cable net and (b) membrane surface element.

We may assume 7, = | and consider {g(#)} = —(...F, F, F,...)" as a vector of nodal internal forces,
and the gradient of function f(Z) is thus the vector —g.

2.2. Minimal surfaces

These minimal area domains rely on the mechanical property of an homogeneous tension in the surface.
Configurations are modeled by M membrane surface triangular elements and N nodes; m; elements are
connected to node i.

Hence, the sum of area elements is

M
Y = Zsk with S = %gbk Ehk, (26)
k=1

where by considering the point 4; such as (Fig. 1(b))

2k3k . 1k4k =0 and ‘gbk = ||2k3k||7 ghk = H1k4k” (27)

By writing & = (%), if each node k coordinates verify 0/ (2')/0X; = 0f(Z)/0X, = 0f(Z)/0Z; = 0, then
& is minimal. Hence, with

of (%) o~ by afhj I (L
= Xy | =0. 2.8
X, X 2Z<2eh] X, 2 Gy Y (28)
Under the assumption of an uniform tension surface, internal force at node i may be written as
. m; g .
F=-> 227, (2.9)
hy

where 6, represents the isotropic Cauchy prestress tensor associated to every surface element in its local axis
(Zx 7, %) such as
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{Gojqoc }T = <0'()”|0'05/k|60,f5/k> = <60‘00|0> WithG() > 0. (210)
Along the direction X, it becomes

(o) “l gbj
Fy == ; T Xy (2.11)

Application of an identical approach along the ¥ and Z axes leads to the equivalence between the re-
lationships 0.9 /0X; = 0.4 /0Y; = 0% /0Z; = 0 and F,, = F,, = F;, = 0. Likewise in the minimal length nets,
calculation of a minimal area may be achieved by searching an equilibrated uniform tension surface.

If 6y = 1, it becomes 0f (%)/0X; = —F;,, and therefore, the vector of nodal internal forces g is merely
opposite to the gradient of function f(Z).

Therefore, the problem is to minimize the function of 3N variables min f (%), where f(%) =% or
f(Z) = &. Since the gradient of /(&) is equal to the internal force vector —g, we encounter here a problem
of optimization which may be solved by using the conjugate gradient method.

3. Conjugate gradient method
3.1. General considerations

Conjugate gradient method can be applied to minimize a non-linear function f by considering its gra-
dient g within an iterative process in the form of

. . |- forp=1,
Xp1 =%, +u,d, withd, = { g+ fyd, 1 forp 2, (3.1)
where f, is a scalar and o, is a steplength obtained by means of a one-dimensional search for descent
direction and called exact line search.
Vector d, is a descent direction if (g,,d,) < 0, where (. , .) is the scalar product. This relationship may be
written as:

£,(0) <0 (3.2)
with f;(a,) = (g,(%,),d,), since we consider functions of the scalar «, verifying
Tolop) = fp(Zp + opd,)  and  g,(a,) = g5(Z), + 0pdy). (3.3)

We note that f,(0) = f, and g,(0) = g,.

Moreover, the requirement f,.; < f, translating decrease of f at each iteration is unsatisfactory since the
decrease can be negligible when compared with reduction which can be obtained in an optimum reduction
process based on exact line search. This exact line search supposes that o, satisfies the Strong Wolfe
conditions:

Jo(0p) < fp(0) + et f(0) and - |f(o,)[ <nlfy(0)] with O < p <y <3 (3.4)
Values for f§, were proposed by Fletcher-Reeves (1972) and Polak-Ribiere (1969):

g S8®) g g R = (&g —&1) (3.5)

P (g1:8m) (&p-1,8p-1)

“FR” and “PR” are used in the following text for Fletcher—Reeves and Polak—Ribiere methods. Since
numerical performance of FR method is often slower than the PR method, Al Baali (1985) demonstrated
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that, if the FR process satisfies the Strong Wolfe conditions (3.4), it becomes (g,,d,) < — 1(g,,g,) with t
positive value, and therefore, the requirement f;(O) < 0 is satisfied. Moreover, Zoutendijk (1970) pointed
out the global convergence on general functions for the FR method and also proved that it cannot fail.

Gilbert and Nocedal (1992) took an interest in the PR method. Their study enhanced two main con-
siderations. Firstly, the specification | ﬁER\ < ﬁ;R leads to the global convergence of the method. Such a
process is called “PR method constrained by the FR method”.

Secondly, a comment based on a suggestion by Powell (1986), allows the use of only non-negative ﬂ;R
values. It is related to the sufficient descent condition (g,,d,) < — w(g,,g,) With 0 < w <1 and equation

<gp7 d]’> < - <gp7gp> + ﬁ§R<gpa dpfl > (36)

The specification (g,,g,1) <(g,,g,) from Eq. (3.5), while SW conditions (3.4) are satisfied, provides
lim ¢ <gp, gp> = (0 and therefore the global convergence of the method.

Our numerical experiments aim to compare these two approaches: the FR method and an optimized PR
method (see Section 3.2.4) where Gilbert and Nocedal’s considerations are given due consideration:

B = min {BR, B with B = max { g, 0} (3.7)

3.2. Line search procedures

3.2.1. Principle

The main problem is to find an acceptable steplength «, which obeys the SW conditions. Numerous
procedures have been proposed and they are mainly related to line search algorithms which generate a
sequence of estimate «, and end when a convenient point satisfies the required conditions.

Gilbert and Nocedal emphasize on the efficiency of the approach suggested by More and Thuente (1990).
This method aims to find an acceptable o, in the sense that it belongs to the set 7,(u) defined by

To(1) = {3 > 0:£y(3) </,(0) + 3 fy(0) and - |fy(o)| <0} (338)

Given oy, in [o, ., %], the search algorithm generates a sequence of nested intervals {/,, } and a sequence
of iterative values o, in this interval until it belongs to 7,(u).
The lower bound a,, is specified by the user and the upper bound o, may be evaluated according to

1 /5(0) = fou,
o N — min 3.9
Pm: U _j{]ﬁ (0) ( )
and thus corresponds to the point at which the p-line of equation f,(0) = —pa, f,(0) intersects the line

fola,) = fo» Where f, . is the lower value on f,(a,) also supplied by the user.
A last remark is that the updating process needs the definition of the auxiliary function:

W, (o) = fp(2p) — fp(0) — :u“pf[;(o) (3.10)

and its derivative W/ (2,).

3.2.2. Algorithm
With o, =0 and thus {I, } = [0, %,| = [0, 0,...] the algorithm is for k =1,2,...

(i) Choose a trial value o, € [, ,, %, |- If oy, verifies the SW conditions (3.4), then o)™ = «,, (end of
process).

(i) Case MTy: if W,(0t,) > Wp(0p, ), then oy, = 0, , and o, = oy, . (3.11)
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Case MT,: if ‘Pp(upl/c) < ‘Pp(apiml) and W;;(%m) (aPi/:—l - aplk) >0, then Opi = Oy and Ops = Ofpsy_y -
(3.12)

Case MTs: if W, (04, ) < Wp(tp,_,) and W) (o, ) (o, — %) < O, then oy, = o, and oy, = 00, -
(3.13)

3.2.3. Comments
Comment 1. As long as case MT, holds, the sequence a,,, o, ... increases while trial values are gen-
erated in [o, |, 0, ] and eventually requires the use of o, as a trial value; this is achieved with

Opt = min {apik—l + 5m‘dx(apfk71 - apilz—l)’ Xpimax }7 where 5max € [1'1 ’ 4]' (3'14)

The algorithm ends at o, if ‘¥,(2,,,) <0and ¥, (x,,,.) <O0.
Comment 2: If case MT, occurs, the sequence of trial values decreases and we force the procedure to use
Oy, @s @ trial value by choosing

Sy € [0ty MAX { Orin Oy 1, % ] With S < 1 (3.15)

(More and Thuente recommend dpin = 7/12). The algorithm stops at o, if ¥} (2,,,,) > 0 or ¥,(,, ) = 0.
Comment 3: The choice o, € [a, |, %y, ] can be made in any way, but an optimized value is reached
when it minimizes, in the given interval, a cubic polynomial interpolating f,(%y,), f, (%), fp(%,_,) and
Sy (%, ). In order to simplify calculations, we will take in our numerical experiments the point located at
the middle of the interval.
Comment 4: Since we are not able to supply the value of f,, . , the choice done by f, . = 0.8 f,(0) appears
as a reasonable setting regarding the test examples undertaken.

3.2.4. Application to tension structures

Application of the More and Thuente’s line search algorithm to the specific case of tension structures
leads to effective and reliable results. Nevertheless, our aim is to suggest a modified approach especially
adapted to the computation of minimal forms in order to lower the computation times required by search
of the acceptable steplength value. The first proposal refers to the evaluation of o, .

Since value of f)(0) decreases while p increases, o, may reach high values. In order to decrease this
value, the suggestion is to choose

OCOP — fp(o) — ﬁ?min
‘Pmax 7fp,(0)

which corresponds to the intersecting point between the p-line (with ¢ = 1) and the line f,(x,) = f,. . If we
verify f) (ocgi ) >0, the value is accepted; in other cases, a,,,, defined by More and Thuente in Eq. (3.9) is
chosen.

The second idea deals with the iterative bracketing phase of intervals {/, }. Instead of cases MT) to
MT;, we propose to consider

(3.16)

Case MT": if f)(04,) = 0, then o, = 0, and o, = oy, (3.17)

Case MTy": if f)(0,) < O then o, = oy, and o = 0, - (3.18)

The comments 1-4 written for the More-Thuente’s algorithm are still in use. The final acceptable value is
denoted o)".
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3.3. Numerical experiments

Several illustrative examples are presented in order to compare the different approaches. Calculation of
the scalar §, may be envisaged with the Fletcher-Reeves formula (f, 'R from Eq. (3.5)) or by using the
optimized suggested value (ﬁOP as in Eq. (3.7)).

Moreover, the steplength evaluatlon may refer to the More-Thuente’s line search algorithm (acMT) or
with respect to the modified method prev10usly put forward (ocl?") in Section 3.2.

All the tests are performed with u = 1073 and # = 10! in the Strong Wolfe conditions (3.4). Gilbert and
Nocedal have indeed demonstrated that this choice for  ensures that the methods FR and PR constrained
by the FR are globally convergent since with a steplength satisfying the SW conditions, it verifies

-1 _(&pd) 21
1*17 <gp7gp> -y

The choice for u was presented as a reasonable value by More and Thuente; actually, the general trend is
that the necessary number of evaluation for « is decreasing, if u decreases. This explains our choice for u.
Furthermore, the searched minimal form is considered as reached if at each node i of the configuration we
verify ((F, F))" <1073

3.3.1. Minimal length net calculations

First application illustrates a simple example where a minimal net is performed between four fixed nodes
located on the vertices of a d x d square. Two free nodes connected to five cable elements lie in the square.
Initial configuration is represented in Fig. 2(a) and the resulting minimal geometry in Fig. 2(b).

CPU computation times are presented in Table 1 in the form of f, calculation method/o, algorithm (OP/
MT refers to ﬁOP and ocMT) Numbers are normalized in such a way that OP/OP corresponds to 1 since it
appears as the fastest procedure

Fig. 2. (a) Square initial configuration and (b) square minimal geometry.
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Table 1

Comparison between conjugate gradient procedures
Calculation procedure Square Schwarz’s Pseudo-HP Scherk’s Chinese hat Perfor-

saddle surface mances

By o
FR MT 2.3 5.3 3.0 4.6 4.4 3.92
OP MT 1.9 3.8 22 3.6 2.5 2.8
FR OP 1.2 1.4 1.3 1.5 1.4 1.35
OP OP 1.0 1.0 1.0 1.0 1.0 1.00

(@) (b)

Fig. 3. (a) Schwarz’s saddle: initial mesh and (b) Schwarz’s saddle.

The second example describes investigation of Schwarz’s saddle shape. Fig. 3 shows the initial and final
configurations.

3.3.2. Minimal surface investigations

The first test is devoted to the calculation of a well-known minimal configuration improperly called
hyperbolic paraboloid since this appellation is indeed geometrically related to a ruled surface which cannot
satisfy the condition of zero mean curvature and therefore is no more a minimal area surface. Hence, we
propose to denominate this domain as a pseudo-hyperbolic paraboloid (Fig. 4). Another minimal form is
represented in Fig. 5; this domain is inspired by the Scherk’s surface.

The next example illustrates the shape-finding of a form called “Chinese hat”. A soap film takes place
between two parallel rings of radii 10 and 2 m and distant from the height # = 4 m (Fig. 6(a) and (b)).

The last test aims to point out a possible divergence of the procedure when boundary conditions do not
allow to generate a minimal surface. It is derived from the Chinese hat example, when the distance sepa-
rating the rings is too important. This non-convergent test is represented in Fig. 6(c) where 7 = 6 m.

3.3.3. Comparison between conjugate gradient approaches

Computation times, presented in Table 1, are summarized under the heading ‘““Performances” and the
analysis leads to the following comments. Methods based on the use of ﬁ[fR appear clearly as less efficient
than procedures with ng (with a factor close to 1.4). This trend confirms the results given by Gilbert and
Nocedal on a collection of large test problems.

Moreover, the use of the optimized line search procedure allows to reduce CPU times to about 2.8 when
compared with the use of More-Thuente’s algorithm. This reduction is related to the specification of a
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Fig. 4. (a) Pseudo-HP initial configuration and (b) pseudo-HP surface.
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Fig. 5. (a) Pseudo-Scherk’s surface initial mesh and (b) pseudo-Scherk’s minimal surface.

narrower initial interval (with ocl?“ix instead of «,, ) and also to non-calculation of functions ¥,(x,) and
¥ (2,) within the bracketing phase.

Since we do not desire to draw any firm conclusions from these results, the interesting feature is that the
suggested optimized approaches provide faster methods devoted to minimal form calculations.

4. Conjugate gradient and density methods
4.1. Calculation of minimal forms with density methods

These approaches originate from the mechanical consideration of a homogeneous tension distribution in
the net or in the surface.
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Fig. 6. (a) Chinese hat: initial configuration, (b) Chinese hat and (c) divergent computation.

Minimal length net investigation is related to the process suggested by Linkwitz and Sheck (1971) and
called force density method. The ratio between the tension and the length of each cable element is prescribed
by the designer in the form of

ql’kzg—. (41)

ck

Thus, an iterative procedure devoted to the calculation of a # uniform tension net and consequently a
minimal length net was put forward:

DE!: initialize force density coefficients with g%~ = 1. (4.2)
DE?: calculate equilibrated configuration and evaluate the resulting cable tensions by

A A (4.3)
DE?: if for all elements )to — t(()‘z)’ < tolerance, then the minimal form is obtained.
fo

()
Lok

(p+1

Else, modify FD coefficients with ¢+ = g% and return to DE;. (4.4)

The attention may be focused on the first step DEé where identical force density coefficients are specified.
Sheck demonstrated that such a requirement leads to the calculation of a specific geometry whose main
property is to minimize the sum of squares of the cable lengths. Steps DE? and DE; deal with an iterative
strategy where convenient adapted FD coefficients are taken in order to obtain the searched uniform
tension net.

Concerning minimal surface calculation, the chosen technique is the surface stress density method which
appears as an extension of the force density method to the bidimensional case of prestress membrane
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surfaces (Maurin and Motro, 1998). The domain is composed of triangular elements characterized by an
isotropic Cauchy stress tensor such as, for every k element

{GOI{]OC}T = <60-’Fk|608/;‘|60:m/1,> = <60k|0-0k|0> with oo, > 0. (45)

Form finding is achieved by prescribing the ratio denoted as surface stress density coefficient (where s;
represents the area of the element k):

00k
qsk = —- (46)
Sk
An iterative process was proposed in order to calculate a ¢, uniform stress distribution and therefore a
minimal surface.

DE!: set surface stress density coefficients to =" = 1. 4.7)

DE?: compute the equilibrated structure and thus the prestress distribution with

of) =q%s?. (4.8)

DE?: if for all elements |6 — ng?‘ < tolerance, end of process.
Else, return to DE; with

+1

45" = aov/ay. (4.9)

We can demonstrate that the specification of identical surface stress density coefficients which occurs in
stage DES1 generates a geometry that minimizes the sum of squared area of the elements.

4.2. Combined approach

The purpose is to provide the designer with a combined approach between conjugate gradient and
density methods. For minimal length nets, it consists in replacing the iterative density procedures DE? to
DE; by the minimization of the function f(2) = % with the use of conjugate gradient method described in
Section 3.

An identical approach may be envisaged for minimal area surfaces where iterative steps DEf and DEf
are replaced by minimization according to conjugate gradient with /(%) = &.

4.3. Numerical results

4.3.1. Scope of the study
We keep the tests described in Section 3.3. Here, the minimal forms are calculated according to the three
suggested procedures:

e comprehensive density methods (DE, to DE] or DE! to DE}),

e conjugate gradient method with ,BI?P and ocl?P (which appears as the fastest process as shown in Section
3.3.2),

e The combined approaches (DE} or DE}_ followed by the conjugate gradient method with /() = &£ or
S and BF, o).

4.3.2. Results

Computation times are presented in Table 2; they are normalized so that the mixed formulation DE/CG
corresponds to 1. The first comment deals with the case of ““square” and “pseudo-HP’’ structures. Density
methods and combining approaches provide identical performances; this result may be interpreted by
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Table 2
Comparison between conjugate gradient and density methods
CG DE DE/CG

Square 1.2 1.0 1.0
Schwarz’s saddle 1.8 0.8 1.0
Pseudo-HP 1.4 1.0 1.0
Scherk’s surface 2.7 0.9 1.0
Chinese hat 2.6 1.1 1.0
Performances 1.94 0.96 1.00

considering that forms calculated at stages DE} or DE; are geometrically very close to the searched minimal
shape.

Concerning the other tests, performances of density and mixed methods appear to be comparable with a
slight advantage for the density methods. An explanation may be suggested and concerns the loss of time
re(:;ahed to the storage of vectors g,_1, g, d,—1 and d, while density procedures only require storage of vector
q(,s .

This comment may also explain only partially the lower performances of the conjugate gradient method.
Numerical results actually enhanced the need of further investigations according to several concepts such as
the influence of the initial mesh or the possibility to use restart procedures in conjugate gradient method (as

suggested by Powell, 1977).

5. Conclusion

New processes devoted to the shape-finding of minimal forms are put forward in this paper. The use of
conjugate gradient method as an optimization tool devoted to the determination of uniform tension do-
mains leads to effective results. However, the suggestion of modified formulations regarding the descent
direction vectors and the steplengths enables to improve the calculation times.

Then, a combined approach including conjugate gradient method and density methods is proposed.
Numerical experiments illustrate the close performances existing between this mixed formulation and
density methods. We also point out the need of further developments in order to improve the conjugate
gradient method efficiency.

Moreover, several future prospects may be enhanced: comparison of the proposed method with other
strategies such as dynamic relaxation, particularly by focusing on the relationship between computation
times and parameters like convergence tolerance level and also numbers of degree of freedom.
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